主な検査項目の説明

臨床検査結果は目安として用いられますので検査結果の判断は担当医にご相談ください。

◆血球算定検査◆ 血液中の細胞成分(血球)の検査です。血球数・量を調べます

WBC(白血球数)	細菌やウイルスなどの侵入を排除する働きがあります。感染症や炎症で増加します。
RBC(赤血球数)	
Hb ヘモグロビン(血色素量)	赤血球の主な主成分はヘモグロビンで全身に酸素を運搬します。ヘマトクリット値は血液中に含まれる赤血球の割合を示すものです。貧血で減少します。
Ht (ヘマトクリット値)	
PLT (血小板数)	出血した時に血を固め、止める働きをします。減少すると血が止まりにくくなります。
Reti(網状赤血球数)	赤血球になりたての若い赤血球で、赤血球の産生能力を反映します。
◆白血球分画◆ 白血球は好中球・リ	ンパ球・単球・好酸球・好塩基球に分類され割合の変化から病気が推測できます。
)	And to 10 a Hill 3 of 10 24 4 7 fm () 3 1 2 2 3 4 5 4 7 fm () 3 2 16 5 1 2 16 5 1 2

NEUTRO(好中球)	細菌などの異物を取り込み分解します。感染症や炎症などで増加します。
LYMPHO(リンパ球)	侵入してきた異物を直接攻撃したり、免疫機能によって排除します。
MONO(単球)	血球や異物の処理、免疫反応など多彩な機能があります。
EOSINO(好酸球)	異物の侵入を防ぐ役割を持っていてアレルギー反応で増加します。寄生虫症などでも増加します。
BASO (好塩基球)	アレルギー反応に関わっています。

◆凝固・線溶検査◆

APTT (活性化部分トロンボプラスチン時間)	出血した時に血液が固まるまでの過程(止血機能)の異常をみる検査です。止血機能に関わるたんぱく質は肝臓で作られるため、肝臓の機能を調べるときにも検査します。
PT (プロトロンビン時間)	APTT はヘパリン療法の経過観察にも必要な検査です。PT%は肝機能障害で低くなります。また PT-INR は経口抗凝固薬(ワルファリンなど)の治療効果を判定する上でも指標と
フィブリノゲン	なります。フィブリノゲンの増加は炎症の指標となります。
D-ダイマー	血管の中で血栓(血のかたまり)が出来たことを示す物質で、緊急性を要する血栓症などの診断に用いられ、治療効果を判定する上でも指標となります。

◆栄養◆

71.64		
TP (総蛋白)	血液中の蛋白の総量を表し、栄養状態の悪化や肝臓や腎臓などの状態を調べる検査です。	
ALB (アルブミン)	血液中でもっとも多く存在する蛋白で、肝臓で作られ栄養状態の悪化や肝障害などで低くなります。脱水では高くなります。	
◆腎臓◆		
BUN(尿素窒素)	体内の蛋白質の老廃物で、腎臓の機能が低下すると高くなります。	
Cre (クレアチニン)	筋肉に含まれる蛋白質の一種で、腎臓を通って排出されます。BUN とあわせて腎機能を評価します。	
eGFR	腎臓で老廃物を尿へ排出する能力を Cre および尿蛋白、年齢、性別等から推計します。慢性腎臓病の重症度の分類に有用です。	
UA (尿酸)	プリン体から作られ腎臓から排出されます。腎臓の機能障害や痛風などで高くなります。	

◆肝臓◆

▼ /4 N//2 ▼	
T-Bil (総ビリルビン)	ビリルビンは赤血球中のヘモグロビンから作られる色素で、間接ビリルビンと直接ビリルビンがあり合わせて総ビリルビンと呼ばれ肝臓・胆道の障害で高くなります。ビリルビン
D-Bil (直接ビリルビン)	が増加することでおこる症状として黄疸があります。
AST (アスパラギン酸アミノトランスフェラーゼ)	肝臓、心筋、骨格筋などに存在します。これらの細胞が壊されると上昇します。
ALT (アラニンアミノトランスフェラーゼ)	主に肝臓に存在し、肝臓疾患などで高くなり肝炎の経過観察にも用いられます。
LD (乳酸デヒドロゲナーゼ)	体内のほとんどの臓器に存在し、臓器が障害を受けると高くなります。貧血、炎症、腫瘍など様々なスクリーニング検査として用いられます。
ALP (アルカリフォスファターゼ)	肝臓、胆道、小腸、骨などに存在し、肝臓疾患や骨疾患などで高くなります。
$\gamma \operatorname{GT} (\gamma \gamma^* \mu \gamma \gamma \nu \gamma \gamma$	肝臓や胆道系障害で高くなります。アルコールや薬剤でも高くなります。
ChE (コリンエステラーゼ)	肝臓疾患で低下し、脂質代謝とも関連していて脂肪肝では高くなります。
NH3 (アンモニア)	肝臓の機能の重症度を推測することができる検査です。アンモニアが高くなると意識障害などが出現します。

◆膵臓◆

AMY (アミラーゼ)	膵臓の疾患や耳下腺疾患などで高くなります。
P-AMY	P-AMY は膵臓の疾患で上昇します。

◆心臓◆

CK (クレアチンキナーゼ)	筋肉、骨格筋、心筋などに存在し、心筋梗塞や筋疾患で高くなります。健康な人でも激しい運動後などで上昇することがあります。
NTProBNP(B型 Na 利尿ペプチド前駆体 N 末端	心臓から分泌されるホルモンで、心臓の機能が低下していて心臓への負担が大きくなると値が高くなり心不全の重症度判定や治療後の効果判定に有用です。腎臓の機能障害でも高
フラグメント)	くなることがあります。
TnT (トロポニンT)	心臓の筋肉に存在します。心筋梗塞の診断に用いられます。

◆電解質◆

Na (ナトリウム)	体内の水分を調節する働きがあります。	
K (カリウム)	腎臓の機能障害やホルモンの異常などで高くなったり低くなったりします。	
Cl (クロール)		
Ca (カルシウム)	主に骨に存在し筋肉や血液の働きにも影響しています。骨疾患やホルモンの異常などで高くなったり低くなったりします。	
iP (リン)	主に骨に存在しエネルギーを作り出す働きがあります。Caと関係があり、ホルモンの異常や腎臓機能を見ています。	

◆鉄◆

Fe(鉄)	主に赤血球のヘモグロビンに存在し酸素の運搬の役目をしています。血清中の鉄の不足などで貧血をおこすことが知られています。TIBC・UIBCを組み合わせることで貧血診断に
UIBC (不飽和鉄結合能)	役立ちます。
TIBC(総鉄結合能)	
フェリチン	体内に鉄がどのくらい蓄えられているか見ています。血液疾患の病態を知る上で有効とされています。

◆脂質◆

T Cho (総コレステロール)	コレステロールの総和です。数値が高くなると動脈硬化や心疾患などの要因になります。
HDL (HDL コレステロール)	善玉コレステロールと言われ、余分なコレステロールを除去してくれます。
LDL (LDL コレステロール)	悪玉コレステロールと言われ、数値が高くなると動脈硬化になりやすくなります。
TG(中性脂肪)	食べ物として得る大部分の脂肪が TG になります。生活習慣病や食後などで高くなります。

◆糖◆

· vii ·	
Glu(血糖)	血液中のブドウ糖濃度で糖尿病の重要な指標とされ、血糖値といわれるものです。食事により高くなります。
HbA1c(ヘモグロビン A1c)	過去 $1\sim2$ ヶ月の平均の血糖値を反映し、糖尿病の血糖値の管理に利用されます。
インスリン	血糖値を調整する働きをします。体質的な糖尿病のなりやすさやインスリンの効き易さを推定できます。

◆免疫◆

関節リウマチや膠原病などで高くなります。	
ウイルスなどの異物が体内に入った時に排除する働きがあります。免疫状態を反映する検査です。	
花粉症や気管支喘息などのアレルギー疾患で高くなり、アレルギー体質の診断や経過観察に有用です。	
スギや卵など個々のアレルゲンを検査し、原因物質の特定や治療判定に用いられます。	
	ウイルスなどの異物が体内に入った時に排除する働きがあります。免疫状態を反映する検査です。 花粉症や気管支喘息などのアレルギー疾患で高くなり、アレルギー体質の診断や経過観察に有用です。

◆炎症◆

CRP (C 反応性蛋白)	体に炎症があるか調べる検査です。炎症で体内組織の崩壊があると高くなり回復とともに低くなります。
PCT (プロカルシトニン)	細菌性の炎症で高くなります。ウイルス感染症や自己免疫疾患では増加せず、細菌性の診断や経過観察に利用されます。
ESR(赤血球沈降速度)	感染症や炎症、膠原病の経過観察に用いられる検査で貧血でも上昇します。

◆甲状腺◆

TSH (甲状腺刺激ホルモン)	甲状腺ホルモンを調節するホルモンで、甲状腺に異常がある場合に検査し甲状腺の病気の診断に有用です。
FT3 (遊離トリヨードサイロニン)	甲状腺ホルモンで、エネルギー代謝や自律神経をコントロールしています。甲状腺の病気の診断や治療効果の判定に用いられます。
FT4 (遊離サイロキシン)	

◆感染症◆

HBs 抗原(B 型肝炎ウイルス表面抗原)	B型肝炎ウイルスに現在感染しているかを調べる検査です。
HCV 抗体(C 型肝炎ウイルス抗体)	C型肝炎ウイルスの感染の有無(現在および過去)を調べる検査です。
TP 抗体(梅毒トレポネーマ抗体)	梅毒の感染の有無を調べる検査です。TP 抗体と RPR を調べることで感染中なのか、過去の感染なのかを知ることができます。
RPR(梅毒血清反応)	
HIV 抗体/抗原 (ヒト後天性免疫不全ウイルス抗体)	ヒト免疫不全ウイルス(HIV)の感染の有無を調べる検査です。

◆腫瘍マーカー◆がん(腫瘍)があるかどうかの検査ですが、がん以外の疾患でも高くなることがあります。そのため他の検査と組み合わせて医師が総合的に診断します。

· · · · · · · · · · · · · · · · · · ·	
CEA(癌胎児性抗原)	消化器系のがんなどで高くなり診断や治療に用いられます。
CA19-9	膵臓がんや胆のうがんなどで高くなり診断や治療に用いられます。
AFP (αフェトプロテイン)	肝がんなどで高くなり診断や治療に用いられます。
PSA (前立腺特異抗原)	前立腺がんなどで早期から高くなり診断や治療に用いられます。前立腺肥大などでも高くなります。
CA15-3	乳がんなどの診断や治療に用いられます。特に再発、転移の経過観察に有効な検査です。

◆尿定性検査◆ 尿中の成分を試験紙法で調べる検査です。

尿蛋白	尿中に蛋白が出ているかを調べる検査です。腎蔵をはじめとする尿路系に障害があると(+)となるほか、運動後・発熱などでも(+)となることがあります。
尿糖	尿中にブドウ糖が出ているかを調べる検査です。糖尿病の指標となります。
尿潜血	尿中に出血した血液の有無を調べる検査です。腎臓や膀胱などの異常のほか、生理中でも(+)となるこがあります。

◆尿沈渣◆ 肉眼ではみえない尿中に出ている細胞などを顕微鏡で調べる検査です。

▼ NOTE THE CITE OF THE CITE O	Rec E M M S C M
赤血球・白血球・上皮細胞・円柱細菌・その他	赤血球や白血球・円柱などの有無や数の増加、上皮細胞の異常など観察します。腎臓や膀胱などの疾患の診断に役立つ検査です。

◆便潜血◆ 便に血が混じっているかの検査です。

便潜血 大腸ポリープや腫瘍の早期発見に役立ちます。大腸がん、ポリープなどで(+)となります。痔出血でも(+)となることがあります。	
---	--